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In mathematical physics, one sometimes has to deal with averages of the type 

I I d4 11~(~)12' T>0 MIt( T) =-T-~' r <~ T 

where/2 is the Fourier transform of some probability Borel measure ,u. We show 
that the asymptotic behavior of M l t  is governed by the usual (upper and lower) 
correlation dimension of the measure p. 
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1. I N T R O D U C T I O N  

In the pas t  decade  the s tudy of  q u a n t u m  systems in connec t ion  with the 
fractal  formal i sm has  become more  and more  of  interest.  There  are at  least 
two typical  s i tua t ions  where one has  to deal  with s ingular  measures ,  tha t  
is, measures  with nowhere-dense  suppor t .  The  first one is the p rob l e m of  
local iza t ion  for systems descr ibed  by Hami l t on i a ns  with s ingular  con- 
t inuous  spectra,  such as the quas iper iod ic  or  d i so rdered  q u a n t u m  systems. 
The second one is the scat ter ing on n o n s m o o t h  obstacles.  To be more  
concrete,  cons ider  the fol lowing two character is t ic  examples ,  referred to as 
P rob lem A and  P r o b l e m  B, respectively.  

Problem A. Localization of States.  Let H be a self-adjoint 
o p e r a t o r  ac t ing  on some Hi lber t  space fit ~ The  dynamics  of  a q u a n t u m  
system with H a m i l t o n i a n  H is de te rmined  by  the one -pa r a me te r  con t inuous  
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group of unitary operators ql(t) = e-re ' .  If 4'0 in J f  is the initial state of the 
system, the time evolution is given by 

4', = ~, (t) 4'0 

One is interested in the diffusive properties of the quantum system. This is 
mirrored in the time-space behavior of the wavepackets 4',. The evolving 
state 4', may propagate away from its initial localization or on the contrary 
stay confined in some finite region. The rate of delocalization can be 
characterized by the time averages 

f2 M ( T ) = ~  1<4',14'0> dt 

If we introduce p, the spectral measure of H associated to 4'0, then, by the 
usual functional calculus (see, e.g. ref. 6), we have 

M ( T ) = l  I :  l/2(t)12 dt 

where/2 is the Fourier transform of p: 

fi( t) = I dx e -ix, dp(x) 

Now, the asymptotic behavior of M(T)  is connected to the degree of 
singularity of the spectral measure. If p is an atomic measure, then a well- 
known theorem due to Wiener states that 

M( T) ~ 1, T ~ oz 

In this case no diffusion is possible and the states stay localized in con- 
figuration space. If on the contrary/z  is absolutely continuous with some 
density function f e ~ 2 ( R )  one has the Plancherel identity [d r  I/~(~)12= 

dx I f (x) l  2, whence 

M ( T ) ~ T  - t ,  T ~  

implying a complete diffusion of the wave packets. In the case of a singular 
continuous measure p one might expect an intermediate behavior. Some 
heuristic arguments have been given in ref. 4 supporting the fact that the 
average M(T)  exhibits a scaling behavior: 

M(T)  ~ T - ~  
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where D is the correlation dimension of the measure/2. In ref. 3 some new 
fractal dimensions have been introduced by means of wavelet transforms. 
For  these dimensions it has been shown that actually the heuristic 
argument is true and that the long-time evolution of the averages M(T)  is 
governed by the upper, respectively lower, wavelet correlation dimension. 

Now, the same type of average arises in another situation: 

Problem B. One-Dimensional Potential Scattering. Con- 
sider the one-dimensional stationary Schr6dinger equation 

�9 . 
+ p 2 )  ~u v e = V~v p (1.1) 

where V is a multiplication operator by some smooth real-valued function 
V(x) with compact support. Left of the support of V the solution ~gv, p 
of (1.1) has the form ~V.p(X)=Ae~P"+Be -~p'. Right of the support it has 
the same form with other coefficients, say ~gv. z,(x) = We ir.̀ . + B'e-~ For 
each p there is a unique pair of complex numbers t(p) and r(p) such 
that 

~e ~p" + r(p) e -ip.;, 
~ v . .  = ( t (p)  e 'r'', 

X "~" - - @ 0  

X "-> + 0 0  

The coefficients t(p) and r(p) are known, respectively, as the transmis- 
sion and reflection amplitudes on the potential barrier V. It can be shown 
that the reflection coefficient has the following asymptotic behavior as 
p---~ ~ :  

r(p)- 2~+0 (1.2) 

where 17(~)= j dx e-~r is the usual Fourier transform. Now suppose 
that we want to deal with a potential of very poor regularity (for example, 
a point interaction). In this case the potential V(x) can no longer be 
considered as a smooth function; therefore we assume that it is merely a 
measure. As .shown in ref. 2, the scattering problem defined for smooth 
potentials can actually be extended to any finite Borel measure with com- 
pact support. In particular, the asymptotic (1.2) is still valid, 1~" being now 
understood as the Fourier transform of the Borel measure V. 

One might expect that the high-energy asymptotic of the scattering 
data reveals the small-scale structure of the scatterer and thus it would 
be natural to observe some scaling behavior r (p )~  p-~,  p---, or. However, 
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this is not the case in general because the reflection coefficient can be very 
chaotic. Therefore, one rather looks at the averages 

s dp p2 lr(p)12~ f :  dp l l~(p)l 2, P ~ o o  

which are known to scale with the wavelet correlation dimension. This kind 
of average on the scattering data was first used in ref. 1 in the case of 
optical diffraction, where the authors recovered the fractal dimension of a 
Cantor-like grating illuminated by a spherical wave. 

At this point, let us summarize the problem we want to consider. If we 
generalize the situation to the n-dimensional case, we are interested in the 
asymptotic behavior of 

1 f d~ I p ( ~ ) l  -~ M/t(T) = - ~  I:1 ~< r 

where fi is the Fourier transform of some finite Borel measure / t  on R". As 
outlined in the last two examples, these averages are governed by some 
fractal dimension of the measure/ t ,  namely the wavelet correlation dimen- 
sion. However, this latter dimension is rather complicated and furthermore 
is not well known. Therefore we wish to establish a correspondence with a 
more common fractal dimension. We define two exponents 

m+(/t)=limsup I~ m-(/t)=liminf l~ 
r -  + .~k log T r -  + ~. log T 

In this paper we show that m+(/t)  and m - ( / t )  coincide with the usual 
upper and lower correlation dimensions in the case of probability Borel 
measures. We believe this equivalence to be known (at least partially) by 
specialists, although we have not found it in the literature. Our  aim is here 
to clarify this subject. 

2. S T A T E M E N T  OF THE P R O B L E M  A N D  
F O R M U L A T I O N  OF M A I N  RESULT 

Consider a probability Borel measure / t  on R". One common defini- 
tion ~5~ of its correlation dimension is the following. Take B(x, a) as the 
closed ball of radius a around x in g~" and consider the function 
x ~--~ /t( B( x, a)). This is a / t -measurable  function. Indeed, if we decompose p 
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into a purely direct part ,  say/Llpp = ~ ,  a i 6h, , and a cont inuous  part ,  say/~,., 
we have that  for all x ~ IR", 

12(B(x, a))  = ~ aiZeih,. ,,)(x) + p , . (B(x ,  a)  ) 

where the no ta t ion  ZA designates the characterist ic function of  a set A c IW'. 
The  first te rm is measurable ;  the second one is a cont inuous  function. 
Hence, we can form the p-average:  

Ol2(a) = f d p ( x )  u ( B ( x ,  a)) 

The quanti t ies 

log g2/~(a) 
co +(p)  = lira sup 

,, - o log a 

c o - ( p )  = lim inf l~  
~F,(a) 

,, - o log a 

are called, respectively, the upper  and lower correlat ion dimensions of  p. 
Now,  this definition of  the corre la t ion dimension is not  very handy,  

because the compu ta t i on  of  s involves an integrat ion versus dp. In par-  
ticular, this forbids numerical  applications.  However ,  if we formally replace 
p (x )  by its mean  value a - " I t ( B ( x ,  a))  on a ball of  radius a, we obta in  a 
slightly different version of  s 

1 
rl~(a) = ~ f dx D~(B(x, a))]-" 

J 

where now the integrat ion is versus dx,  the Lebesgue measure.  Note  that  
we have implicitly supposed x ~--~p(B(x, a))  to be square-integrable.  This is 
actually the case, as we shall p rove  in the sequel. We also introduce the 
function 

1 f d~ ]p(~)[2 
M/t(T)  = T'---; Ir ~ r " 

where fi is the Four ier  t ransform of p: 

I~(~) = fa,, d p ( x )  e - ;r (2.1) 
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The dimensions associated to Fp and Mp are, respectively, 

),+ (p) = lim sup log l"p(a), y -  (p) = lim inf log ['it(a) 
u ~ 0 log a ,, ~ o log a 

and 

m + (p) = lim sup log Alp( T),  m - (/t) = lim inf log Mp(T) 
T~ + ~1 log T r ~  + ~_ log T 

In ref. 3 the dimensions m -+(p) are shown to coincide, up to the sign, with 
the wavelet correlation dimensions. In this note we establish simple rela- 
tions between the three pairs of  dimensions o9-+(p), ~,-+(p), and m-+(p). We 
will prove that 

) '+(p) = co+(p) = --rn (p) 

~,- (/~) = o~- (/~) = - m  + ( / ~ )  

and thus show that the correlat ion dimension of  a probabil i ty Borel 
measure can be defined via any one of  the three functions Op, Fp, or Mp. 

3. S O M E  G E N E R A L I Z A T I O N S  

Let Z be the characteristic function of  the unit ball B(0, 1) in ~", and 
;(,,, its dilated version: 

z,,(x) = ~ x  

The functions f2/~, Ill, and Mlz can be more  simply rewritten as 

~ ( a )  = a" @(x)  ~ * z , , ( x )  

F,u(a)=a" dx[fl , Z,,(x)] 2 

Mp(T) = f d~ Ip(~)l-~ x~(~) 

A natural  extension of  these definitions is to replace Z by some positive 
function g well localized a round  zero. More  precisely, let g be a positive 
Borel function, that  is, a function for which all preimages g -  I(A) of  Borel 
sets A c 0~" are Borel sets, too, and as before let g,,(x)=a-"g(x/a) be its 
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dilation. Supposc in addition that g is rapidly decreasing, that is, it decays 
faster than every polynomial: 

max sup Ix=g(x)l < oo, N=O, 1, 2 .... 
lal  ~<N . r e  R"  

Then it makes sense to replace X by g, as shown in the following 
proposition. 

P r o p o s i t i o n  1. 
the functions 

If g is a rapidly decreasing function, then for a > 0 

12~/2(a) = a" f d/2(x) /2 * g,,(x) (3.1) 

Fx/2(a ) = a" I dx (/2 �9 g.(x)) 2 (3.2) 

M.~/2(T) = f d~ 112(r gr(~) (3.3) 

are well defined and take finite values. If, furthermore, g belongs to the 
Schwartz class ~ (R") ,  then the Parseval-Bessel equality for ~2.dl and F~/2 
holds, namely 

and 

a pa 

(3.4) 

a n 

(3.5) 

Note that the average in (3.5) coincides with the one given in ref. 3 in 
relation with the wavelet correlation dimension. 

Proof. The proofs are elementary, but we shall give them anyway for 
the convenience of the reader. 

Proof  o f  (3. 1). Since g,  is measurable, there exists a sequence of step 
functions g,N converging pointwise to g,, as N--. oo (see, e.g., ref. 7). By 
the same argument as above each function/2 �9 g2' is measurable. Hence the 
limit function /2 * g,  is also measurable. Moreover, g ,  is bounded by 
a-"  []g[[,~ and 

n~/2(a) < Ilgll,~. fd/2(x)/2 �9 l ( x )=  Ilgll~,_ 
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Proof of  (3.2). The function g together with its dilations g ,  are in 
~ and by Fubini's theorem the same holds for p �9 g,.  Now clearly p �9 g~ 

is in 50-'- and thus p �9 g,, is in 5 ~ by H61der's inequality. 

Proof of  (3.3). The Fourier transform of a probability measure is a 
continuous function and there is no problem in defining M.~p. Moreover, 
1/~1-~ is bounded by one and [M.jt(T)I <~ Ilgllt. 

Proof of  (3.4). Choose a nonnegative function ~b in CI;  such that 
~b = 1 on the unit ball B(0, 1 ) and form the sequence of functions 

s  d l t ( x ) l t * g , ( x ) ~ ( N  ) 

These functions converge for each a to f2.~.p(a) since 

<~ O(1) a" f dp( x ) -* O, N ---~ c~ 
Ixl >1 N 

Since we may, we take it as a tempered distribution and hence by definition 
we have 

, a f  I g2 p (a ) - ( -~ ) , ,  d~fi(r p . g , , ( . ) ~  (~.) 

Here fi is a priori taken in the sense of distributions, but since fi is a 
continuous function, it coincides with Definition 2.1. Now for 1/e 5s and 
s t  5 ~ the convolution theorem applies, namely (q * s) ^ -=0 "s and there- 
fore we have 

[ P * g , , ( ' ) q ) ( N ) l  ^ 

Altogether we end up with 

~ "  ^ ,5  (~ )  = (/~g,,) * 4), , , ,( .  ) 

att 

^ A  
Since pg,, is continuous and q~ rapidly decaying, it follows from the 

approximation of the identity lemma that (pg.) �9 ~b ~,'u converges pointwise 
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toward ltg,,. Moreover, ( p g , ) .  ~bt/N is uniformly bounded by some 
function, as shown in the following lemma: 

i . emma 3.1. Consider the function 

K~(x) = (1 + Ixl) -= 

Then for all ~ > n we have 

IKT/N �9 g=(x)l ~< O(1) K~(x) 

uniformly in N>~ 1, where as usual K~/N(" ) = NK(N. ). 

Proof. For any x e R "  we 
domains: 

K'~/x*K~(x)={!,.~Bco. l.,./21~ 

715 

split the convolution integral into two 

"t-fvCB0. l.v/21 ) Ny KI/N(X-) ) K~(y) 

= It(x ) + I2(X) 

For all y ~ B(0, Ix~2[), we have ] x -  Yt >~ ix]~2. Hence 

I /N dy Ig=(y)l ~< I[g~ll, g~/u 

On the other hand, 

I2(x)<~K~ I,.r B o. i.,./21 ~ 

Now on every domain bounded away from zero, say W'\B(O, 1), we have 

KT/N(x) <~ O(Ixl -=) O(N . . . .  ) ~< O(1) g~(x/2) 

and thus 

K~/N *K~=I,(x)+I2(x)<~O(1)K~(x/2)<~O(1)K~(x) (3.6) 

Since K~/N * K  ~ is uniformly bounded by IlK~llt IIK~ll~_ on B(0, 1), (3.6) 
holds on the whole space W' and the proof of Lemma 3.1 is completed. II 

As a result, we have that 

I(Pg,~,) * ~,/NI ~< O(1) K" e s 

822,'86/3-4-17 
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for all ~ > n  uniformly in N>~ 1. We use the Lebesgue domina ted  con- 
vergence theorem to conclude 

g2.~lt(a) = lira [2Np(a) = a"f cl~ I~(~)1 -~ ~ ( o ~ )  

Proof of  (3.5). This is similar and we leave it to the reader. | 

Thus we have defined more  general functions O�9 F,,/t, and M d.t 
parametr ized by g. We can associate to them a set of  exponents that are a 
natural generalization of  the previous exponents:  

o9+(I t ) = lim sup log s co.~,(it) = lim inf l~ 12xlt(a) 
�9 ,, ~ 0 l o g  a ' , , -  o l o g  a 

y+(p)  = lim sup log F#.t(a) log Fzlt(a) 
�9 ,, - o log a ' ),.~ (,u) = lim,, _inf,, log" a 

m + (/l) = lim sup log M.~,It(T) m.~- (p) = lim inf log M.jt(T)  
'" T -  +~_ log T ' r -  + ~ log T 

4. MAIN RESULT 

The main result we want to prove can be summarized in the following 
theorem. 

T h e o r e m  1. Let p be a probabil i ty Borel measure on 1~" and g a 
Borel function on W'. If g is nonnegative, rapidly decreasing, cont inuous  at 
zero, and such that g ( 0 ) >  0, then we have 

m.+(/l)=m+(it), m.~-(/t) = r e - ( u )  (4.1) 

)'.+(it) = - -m-( lL) ,  ~,.~_(,u) = - -m +(IL) (4.2) 

o ~ ( l L )  = - m - ( l L ) ,  w~,(lt) = - m  + ( / z )  ( 4 . 3 )  

U p o n  choosing g the characteristic function of  B(0, 1), we have the 
following result: 

Corollary 1. The following holds: 

), + (/1) = co +(ll ) = - -m - (/~) 

),- (l~) = w-(/~) = - -m +(/~) 



C o r r e l a t i o n  D i m e n s i o n  f o r  a P r o b a b i l i t y  M e a s u r e  

For the proof of Theorem 1, we need the following lemma: 

k e m m a  1. 
Then we have 

7 1 7  

Let s(t) be a strictly positive function defined for t >0.  

lim inf l~ s(t) = sup{sis( t )  ~< O(t=), t ~ 0} 
, -, o log t 

lim sup log s(t) = inf{slt"  ~< O(s(t)), t ~ 0} 
, -, o log t 

The proof of this lemma can be found e.g. in ref. 3. 

Proof. We successively are going to prove Eqs. (4.1)-(4.3). 

Proof  o f  (4. I) .  Since g ( 0 ) > 0  and g is continuous at zero, it is 
greater than some characteristic function, that is, we can find 2 > 0 such 
that 

in which case 

and 

1 
~ X(2x) ~< g(x)  

Zr(x)  ~<2 ''+ tg~T(X) 

Mlz(T) ~ 2 "+ 'M~t (2T)  

Now let us fix e > 0 and split Mx/~ into two terms: 

�9 141 ~< T I ~ 141 > -,.l ,,: 

The first part can be related to Mlt: 

"f dr I/~(~)1 -~ gT(~.)~ Ilgll ~ T':Mlt( T I +t:) 
Id l  <~ T I +~ 

and the queue of the integral can be easily bounded: 

f d{ ]fi(~)]2 gr(C) ~< I d~ ]g(~)[ 
141 > T I + ' :  141 > T': 

(4.4) 
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On one hand T':M/2( T ~ +~') is a positive function which decreases not faster 
than T':-i [this is an evident consequence of /~(0)>0 and ~ continuous].  
On the other hand, ~1r d~ Ig(()[ is a rapidly decaying function of T. 
Hence, we can regroup the two terms under the same bound: 

M~,u( T) <~ 0(1) T':Mp( T' +':) (4.5) 

Inequalities (4.4) and (4.5) imply the following relations for any real ~: 

M j2(T)  <<. O(1) T~'~MIt (T)  <~ O(1) T ~ 

T~ <  O(1) Mlt( T) =~ T ~' <~ O(1) Mxp( T) 

MI2(T) <~ O(1) T ~' => Mxlt(T) <~ O(1) T ~'' +':'+ ~ 

T~ <  O(1) M,p(  T) => T~' <<. T':O(1) MIt( T ~ +':) 

Thanks to Lemma 1, this leads to 

(1 +e )  - t  mT(p)<~m-(p)<~mT(/z)  

m+(y)  ~< m +(/~)~<(1 + e)m.+(/~)+ e 

Since this holds for all t > 0 ,  it proves (4.1). 

Proof of  (4.2). The idea of the proof here is to bracket g by two 
Schwartz functions ~o~ and cp_, and to use expressions (3.5) for F,e,II and 
F ,p J2  . 

Since g(0) > 0 and g is continuous at zero, there exists a positive func- 
tion (p~ in Co ~ such that q~ ~<g with opt(0) >0.  On the other hand, we can 
find a Schwartz function (P2 which majorizes g. Therefore we have 

F,p,lt(a) <<. F~lz(a) <~ F~2p(a) 

with ~Pi, i= 1, 2, ~ 6P(R"). Now, taking (3.5) into account, we obtain 

a" I d~ I/~(~)l 2 Ick,(a~)l 2 ~< r.j2(a)<~a" I d~ I/~(~)l 21~2(a~)l 2 

that is, 
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The inequality is conserved when one takes the logarithm. Hence, 

- m 17~, r-(/~ ) <~ co.~ + ( / t )  <~ - m 17~,_1:(/~) 

- m i + ,  I : (~ )  ~< o~; (/1) ~< - m i + : l : ( . )  

Now, since ~b;(0)= j ~0; > 0, the two functions ]~b~] 2 fullfill the conditions of 
the first part of Theorem 1, whose direct application then proves (4.2). | 

Proof o f  (4.3). The proof of (4.3) is similar to (4.2), but there is one 
more difficulty. Suppose we still have ~o~ ~< g ~< c#z with c#~ positive Schwartz 
functions. If we use expression (3.4) of g2,p,, we have 

a., I d~ I~(~)i-' ~,(a~)~ G.(~)~ ~"I a~ i~(~.)l-" G(a~) 

but the ~; are not necessarily positive real functions. Therefore, we must 
choose the ~o; more carefully. Assume ~o~ to be radial (this choice is always 
possible). Then the autoconvolution q~j.  q)~ is a Co s function whose 
Fourier transform takes real nonnegative values. Moreover, since g(0) > 0, 
we still can find some constant c > 0 such that 

1 
- ~ ,  * ~ol(cx) <~ g(x) 
c 

On the other hand, we can majorize ]~b26 by some positive Schwartz func- 
tion ~2. Thus, setting ~bl(x ) = ( l / c  2) ~O~(X/C), we have the new bracketing 

""I de Ip(r o,(ar ~ G.(a)  ~ a" I ar I~(r ~2(ar 

with real positive functions ~b~ and ~b 2 and we can conclude the proof as 
before. | 
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